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Abstract  The work on equation (B) below has been studied by others for different degree ‘n’ and equation (A) below for 

degree five, has been previously published by Mr. Ajai Choudhry (Ref. no. 1). But combined systematic analysis for degrees 

2,3,4,5,6,7,8 & 9 etc. has not been done before, as is done in this paper. C                                        
                           ( ) and                                   ( )  

Keywords  Sums of Powers, Diophantine Equations, Number Theory, Pure Math 

 

1. Introduction 

The equation (A) in this paper has three terms on either side in section one and equation (B) has four terms on both sides in 

section two. In other words this paper deals with degree’s (2,3,4,5,6,7 & 8) for equation (B) & gives a generalized parametric 

solutions for any degree ‘n’ for equation (A). As is known that solving Diophantine equations for power five and above is 

quite difficult. In this paper we show that equation (A) given above is solvable when (s,t,u,w,x,y) are known and we provide 

methods to find integer coefficents (a,b,c) for which the above Diophantine equation is satisfied for degree<10. Similarly, 

analysis is provided for equation (B) also. This paper thus shows that parametric solutions are possible for the Diophantine 

equations (B) for degree n < 10 & gives a generalized parametric solution for equation (A) above for any degree ’n’. 

2. Discussion (See Below) 

1. Consider Equation 

                                                   (A) 

Let  S=pt+1, T=qt+1, U=t+1 

and  W=pt-1, X=qt-1, Y= t-1 

&    c = - (ap+bq) 

After substituting in equation (A) and solving for the coefficients (a,b,c) we get: 
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For even degree’s (n = 4, 6 & 8)  

n=4 we get : 
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For n=6 we get: 

         (    )      (    )   (   ) 

      (    )       (    )   (   ) 

      (     )      (     )   (   ) 

For n = 8 we get: 
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    (   (     )      (     )      (     )   (   )) 

Note: Similarly for n=10, 12, 14, etc. similar pattern with the coefficient’s is given in the table below. 

For odd degree’s (n = 3, 5, 7 & 9)  

n=3 we get 
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For n=5 we get, 
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For n=7 we get, 
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For n=9 we get, 
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Note: Similarly for odd ‘n’ = 11,13,15, etc a similar pattern of the coefficient’s is given, in the attached tables. 

Table 1.  Pascal’s Triangle 

n     b c d e f g h j k L m n p q r s t u  

                      

           1           

1          1  1          

2         1  2  1         

3        1  3  3  1        

4       1  4  6  4  1       

5      1  5  10  10  5  1      

6     1  6  15  20  15  6  1     

7    1  7  21  35  35  21  7  1    

8   1  8  28  56  70  56  28  8  1   

9  1  9  36  84  126  126  84  36  9  1  

                      

We have the well known Pascal’s Triangle (given above) 

Above is for different degree’s ‘n’: 

Above is table of Coefficient’s of expansion of (m+1)^n 

*Coefficient ( a, b, c, d, e, f, --------u) for (    ) and selected degree ‘n’ is given by, 

  
   

    

[    (   )  ]
 

      (  )                     

(See below for more tables) 

Equation,  

                                                    (A) 

Table 2.  For odd degree 

Degree n  constant 
Coeff. 

(  ) 
Coeff. 

(  ) 
Coeff. (  ) 

Coeff. 

(  ) 
Coeff. 

(   ) 
Coeff. 

(   ) 
Coeff. 

(   ) 
Coeff. 

(   ) 
Remarks 

3 1 n  - - - -     

5 1 2n n - - -     

7 1 3n 5n n - -     

9 1 4n 14n 84 n -    n=prime 

11 1 5n 30n 42n 15n n     

13 1 6n 55n 132n 99n 22n n    



   

 

15 1 7n 91n 5005 429n 3003 455 n  n=prime 

17 1 8n 140n 728n 1430n 1144n 364n 40n n  

Where (a, b, c) are polynomials in (t) 

For above table, coefficients of (  ) is given by, =n(n-1)/2  

For degree eleven we get coefficient of (  ) =n*(11-1)/2= 5n 

and the coefficients of (  ) is given by =n (n-1)(n-2)(n-3)/24 

For degree eleven we get coeff. of (  ) = n*(11-1)*(11-2)*(11-3)/24=30n  

Table 3.  For degree ‘n’ even 

Degree n  constant Coeff. (t^2) 
Coeff. 

(t^4) 
Coeff. (t^6) Coeff. (t^8) Coeff. (t^10) Coeff. (t^12) 

        

4 2 2      

6 3 10 3     

8 4 28 28 4    

10 5 60 126 60 5   

12 6 110 396 396 110 6  

14 7 182 1001 1716 1001 182 7 

The constant terms in above table has the relation given below Table (3), 

K = (n)(n-1)(n-2)/12 for degree 12 

For degree n=12, the coefficient of constant term is = ( 12*11*10)/12 = 110 

 

 

 

Table 4.  For odd degree ‘n’  

Coefficient’s for polynomial (a) in 

equation (A) above 
Representation for degree ‘n’ = (3,5,7,9, -------u) Remarks 

    1  

   n*(n-1)/( 2! )  

   n(n-1)(n-2)(n-3)/( 4! )  

     n(n-1)(n-2)(n-3)(n-4)(n-5)/( 6! )  

t^p , (p=8) n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-p+1)/( p! )  

-- -  ----------------  

---  ------------------  

---  ----------------  

    
    

[ (  )(   )  ]
 

Same formula as Pascal’s 

table 

  
  

 

Where, ( p! ), represents (p) factorial 

 

 

 



   

 

 

 

 

 

Table 5.  For even degree ‘n’  

Coeeficent’s for polynomial 

(a) in equation (A) 

above 

Representation for degree ‘n’ = (4,6,8,10, -------v) Remarks 

   2n(n-1)(n-2)/( 4! )  

   3n(n-1)(n-2)(n-3)(n-4)/( 6! )  

   4n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)/( 8! )  

   5n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)(n-8)/( 10! )  

   (p=8) [ (p+4)(n)(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n – p - 2)/2] * (( p+4)! )  

-- -  ----------------  

---  ---------------  

---  ----------------  

    
    

[ ( ) (   )  ]
 

This representation is similar like 

the form given in table (a) above. 

  
  

 

Where, ( w! ) represents [(p+1)! ] factorial & ‘n’ is relevant degree of the equation. 

For n=9 we get the following equations for the coefficients (a,b,c) of the equation (A) and is given below, 
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Putting n=9 we get, 
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Similarly we get: 
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General equation for degree ‘n’ odd is given below, 
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And similarly for (b & c) 

For even, n = 8 we get: 
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Where (w=p+1) 

Hence general solution for even degree ‘n’ is given below, 
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For example in the above for n=8 & coefficient of (   )   (   )  

we get for p=2. w=p+1=2+1=3 , 
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Similarly we get, 
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Numerical solutions by taking values of variable (p, q, t) = (3,2,2) is given in the below table 

(       )   (                  )  

(       )   (                  ) 

Table 6.  Below for odd degree ’n’ find numerical solutions 

Degree ‘n’ a b c s t u w x y 

3 -23 70 -71 7 5 3 5 3 1 

5 -1199 6478 -9359 7 5 3 5 3 1 

7 -35783 369430 -631511 7 5 3 5 3 1 

9 -947039 19170718 -35500319 7 5 3 5 3 1 

Section (2) 
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Numerical solution is: 
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